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A Simple Method for Determining the Green’s
Function for a Large Class of MIC Lines Having
Multilayered Dielectric Structures

RAYMOND CRAMPAGNE, MAJID AHMADPANAH, aND JEAN-LOUIS GUIRAUD

Abstract—To find the characteristic parameters of the wave
propagation in microstrip structures, several Green’s function
methods have already been developed, corresponding to particular
geometric configurations. In this paper, three of these methods are
synthesized, showing that the final equations in the different cases are
identical. Moreover, using the transverse transmission line theory,
the Green’s function is solved numerically for an N-layer dielectric
structure.

1. INTRODUCTION

ICROSTRIP transmission lines are largely used in
the microwave integrated circuits. Although being a
simplifying approximation, the quasi-TEM approximation
is well known to have proved useful in giving quite accurate
results for practical purposes. The characteristic parameters
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of such lines have been calculated, using various methods.
The method utilizing Green’s potential function lets one
transform a differential equation to an integral one; where
the unknown quantity becomes the charge dénsity. This is
solved easily by numerical techniques using the moment and
the point matching methods.

In this method, the conductor geometry can be defined
exactly; in particular the conductor’s thickness and the
dissymetry in the strip configuration can be taken into
account. However, we assume infinitely thin symmetric
conductors because these parameters do not modify the
determination of the Green’s function.

The present paper tries to generalize the studies done on
microstrip lines with two or three layers of dielectric [1]-[3]
in that it determines the Green’s function for multilayer
microstrip lines having the same conductor geometry as
used in previous studies. Our main aim had been at present-
ing the results in analytic form which lends itself to numeric
solution, requiring very little modification in the programs
already existing.
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Fig. 1. The geometric configuration for determining the Green’s function

1n a rectangular region; definition of notations.

II. Usg oF THE GREEN’S FUNCTION

For a unit charge located at (x,,y,), the Green’s function
should satisfy, by definition, the Poisson’s differential equa-
tion in the plane (x,y):

1 .
VzlG(an’ |x0a}’o) = Eé(x — Xo) * 0y — o) (1)

using the notations of Fig. 1, the following boundary
conditions should be applied to each dielectric interface:

G(x,s,—0)=G(x,s; + 0) (2a)

oy 1605 = O] = 5701 5[5, + 0)) (2b)

Figs. 2(a), 3(a), and 4(a) illustrate the configurations used in
practice, while Figs. 2(b), 3(b), and 4(b) show the corre-
sponding geometries which permit the determination of the
Green’s function. Depending on the type of the
configuration, several methods have been used to transform
the differential equation (1) with two variables, to a single
variable differential equation, integrable analytically.

To solve the problem of an inhomogeneous triplate, Figs.
2(a) and (b), Yamashita, {1] expands the Green’s function in
a Fourier transform in the x-coordinate:

f(x)e dx.

So, equation (1) is expressed as the following differential
equation:
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Fig. 2. (a) The triplate configuration. (b) The corresponding geometry

for determining the Green’s function (s — 0).
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Fig. 3. (a} Array of periodic conductors. (b) The elementary cell for
determining the Green’s function (s — 0).
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Fig 4. (a) Microstrip with rectangular sidewalls. (b) The corresponding

geometry to calculate the Green’s function (s — 0).

where G and } are the Fourier transforms of the Green’s
function and the unit charge, respectively. The boundary
conditions, satisfied by G lead to the equations similar to
(2a) and (2b).

In the second configuration, Fig. 3(a) and (b), with which
the microstrip periodic structures can be analyzed, Weiss [3]
expands the solution in the form of space harmonics, using
the fact that the medium is invariant by a translation p along
the x-coordinate,

+ o
G(y.x |}’o»~\'0) = Z Gm(J’)ejﬁ"'x«

m= -0
After some mathematical manipulations, equation (1)and
the relation above can be written as:
d*G,,
dy”

4)

Here again, the continuity conditions satisfied by are similar
to those in (2).

Figs. 4(a) and (b) illustrate the configurations which
correspond to the microstrip line with rectangular side
walls, [4].

This is only a particular case of a problem which can give
rise to eight different cases, depending on whether the

1 i .
- G, = =P (—JBwx) - 0y — yo)-
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Fig. 5. Classification based on the boundary conditions. The thick solid
lines represent the electric walls, the dashed lines correspond to the
magnetic walls and the dielectric interfaces are specified by the thin
solid lines.

rectangular walls satisfy the boundary conditions of Dirich-
let type (electric wall, G = 0), or of Neumann type (magnetic
wall, 0G/on = 0).

We shall show that using the transverse transmission line
method, the boundary conditions on the lower and the
upper surfaces can be taken into account. Hence the eight
cases mentioned above can be reduced to three, as shown in
Fig. 5, where the conditions on the horizontal walls can be
arbitrary.

As in [2], the Green’s function can be expressed as the sum
of the product of elementary functions with separated
variables:

G= Zl Gi(y) - Gi(x) (5)
in order to satisfy the boundary conditions on the vertical
walls, the following expressions are found for G(x), for the
three cases of Fig. 5:

nmwx

case 4(a): GZ(x)= cos — n=2,3, o,

case 4(b): Gj(x)=sin (2n + 1)72%6—, n=12-0,

case 4(c): Gj(x)=sin mr_x’ n=12-o.
a

using these expressions in equation (5) and noting that the

functions sin (nzx/a), cos (nmx/a), and sin (2n + 1)(nx/2a)

are orthogonal in the interval (0,a), the following differential

equations are obtained:

2y 2
4a)=4Gn _ (Tf) G

dy? a
= -—35( — Jo) cos Xo (6)
= T Yy—JYo P
aa n |?
e _ A e
4(b)=> 07 [(271 + )2a} Y
2 . MXg
= 25y — 4 1) 7
2oy-ysin e =2 )

d*G} nm\?
w0=-2% - (2)

= )

a .

2 . n
=— 3(y — yo) sin

Again, the functions G}, should satisfy the boundary
conditions similar to (2).

The differential equations (3), (4), (6), (7), and (8) and the
corresponding boundary conditions, have in general been
solved for a very few number of dielectric layers, because the
method, consisting of satisfying the boundary conditions on
each dielectric interface, leads to a system of linear equations
of 2N rows (N being the number of the dielectric layers). To
overcome this difficuity, some authors [4] have tried to
generalize the problem. We shall show that the equations in
[4], which are mathematically exact, can be formulated by a
much simpler method and easier to treat numerically.
Moreover, we will consider some more general geometries
(Figs. 2(b), 3(b), and 4(b)).

At first, we note that all of the differential equations
already found (equations (3), (4), (6), (7), (8)) are identical,
just as are the boundary conditions.

So, the functions G(8), G,,, and G, can be determined by
similar methods. Moreover, the differential equation
satisfied by these functions and boundary conditions, can be
identified with the equations satisfied by the voltage and the
current along a transmission line.

II1. THE TRANSVERSE TRANSMISSION LINE METHOD

Consider a transmission line with a current source of
intensity I, at y = y,. The voltage and current relations
along the line are [5]-{7]:

dv
dl ¥
;l; = —Z V+1,-8(y — yo) (10)

where Z_ is the characteristic impedance of the line and y is
the propagation constant. Equations (9) and (10) solved
simultaneously lead to a differential equation satisfied by the
voltage:

axv

dyz - y2V= —chIs . 5(y—y0)

(11)

In the case of the change in the characteristic admittance
of the line, the continuity conditions are

Vi=Vi (12a)
and I; = I, which combined with (9) give:
av, Vi
Y.~—— = . _,
ci 6y ci+1 ay (12b)

Comparing (11), (12a), and (12b), satisfied by the voltage
along the transmission line, with those satisfied by the
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one-dimensional Green’s function, one notices the following T
similarities: £y he
1) The functions characterizing the Green’s function can ’ F
be identified by the voltage along the line: s x018, & hs
A Y mm e s e
V=0GB); G.(y); Giy) g AL
- . . — - - /l—
2) According to (2b) and (12b), the dielectric constant of g c A
v . . « e . . 1 17
the layer can be identified by the characteristic admittance of , —
. . . e 7
the transmission line. ’
Table I shows the identification of all of the characteristic (2)
parameters concerned in equations (3), (4), (6), (7), and (8). —t +
For example, for the configuration illustrated in Fig. 5(c), & & & €y
comparing (8) and (11), we obtain: y = nn/a. — '
Taking Y; = ¢; and equalizing the right-hand sides of the he ha
two equations gives the expression for the intensity of the —  a— Y= & coth ahe
current source: <_71 _Y‘{+ E Yy : &, coth %lw
&y £y
[ - 2 . nmxg o —
s = %Sm a yy+ EtanhnThz
5 oy vy
On the same reasoning, the other values of Table I are % 2 ;3" A Ear Yhm g
found in a similar way. If the Green’s function is to be EutahnTh3
i . Tl 4a Yyt Calah NI 03
calculated in the charge plane (y = y,), according to the - M v e
previous identifications, we should determine the voltage on T e
the transmission line at y = yg: Y= %tV (b)

V= ZI,

where Z is the impedance seen in the plane y = y, because of
all transmission line steps of length 4, and the characteristic
admittance g. These steps can be terminated by short-
circuits (Dirichlet’s case); open circuits (Neumann’s case),
or by a matched charge (where the dielectric is infinitely
long).

Consider the example of four dielectric layers represented
in Fig. 6(a). This is a special case of the configuration

Fig. 6. (a) Microstrip with rectangular sidewalls and 4 dielectric layers.

(b) Application of the transverse transmission line method.

illustrated in Fig. 5(c), where the lower and the upper walls
are the short circuits. With the help of Table I, the Green’s
function is found to be

(13)

. hmx
G(x,y)=ZGﬁ(y)sm7, y=Yo

n
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where Gi(y,) is determined by the transverse transmission
line technique Fig. 5(b). The admittance in the charge plane
is

nnh,

nmh
&, coth —Zl—i + ¢, tanh
Y = 82 °

nwh, nrh,

g, + &; coth - tanh

a

nhs

nrh n
g4 coth —— 4 ¢; tanh
a

+83'

(14)

nmhy, nihy

&3 + ¢4 coth - tanh

referring to Table I, the source intensity is found to be equal
to 2/nm sin nmx, /a, and the function Gi(h, + h,) is deter-
mined by the following relation:

2 1 .
Gz(h1+h2)=;&?51 nnxo

(15)

The resultant Green’s function is found by replacing in
equation (13) the values obtained in (14) and (15).. Taking
hy =0, we find the formulas presented by Yamashita and
Atsuki [2] in a modified form.

In this way, we are in the possession of a general theory
which is independent of the number of the dielectric layers.
The problem is reduced to the determination of Y, for which
the following formula should be iterated:

Y. + Y, tanh yl

Y=Y —-
Y. + Y tanh yl

c (16)

For the horizontal walls, Y, = 0 for Neumann and is
infinity in the case of Dirichlet. In the example above,
Dirichlet conditions were considered; to solve the problem
with Neumann conditions, coth nrnh,/a and coth nnh,/a
must be replaced by tanh nrnh, /a and tanh nnh, /a, respec-
tively. To find the Green’s function in a plane other than that
of the charge, at a distance h, the formula giving the voltage
along the transmission line must be iterated:

(17)

In Fig. 6(a), for example, to find the Green’s function at
y = hy, Gj(hy) is determined and using equation (17), we
have

Z
V = V.{cosh yh + —“sinh yh}.
Zy

h
Gihy + hy)= Gf,(hl){cosh nna 2 4 . IZ sinh m;hz
24L

|

where Z; is the impedance of a short-circuit at the end of a
length of line A, that is,
1 1 nrh,

Z; =_ =—tanh .
o Y, Slan a

IV. APPLICATION

An important application of this theory is the study of the
microstrip configurations whose dielectric medium has a
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Fig. 7. Characteristic parameters of the propagation along a microstrip;
the dielectric constant of the substrate having an exponential variation.

variable dielectric constant with an index gradient in the y
direction. In this case, in order to apply the method, the
dielectric thickness is subdivided into N equal intervals of
constant permittivity (Fig. 7). The numerical studies have
shown that, for the index gradients with no abrupt variation,
the characteristic parameters of the propagation tend to a
limit, and that subdividing the dielectric into 30 layers is
quite sufficient.

Fig. 7 illustrates the variation of the effective dielectric
constant and the characteristic impedance for an exponen-
tial variation of the dielectric constant. To obtain the curves,
the value of the relative permittivity has been taken constant
(equal to 11) in the conductor plane, and it has been varied
from 1 to 10 in the ground plane. This can be the starting
point of further studies concerning the heat diffusion
through a dielectric substrate, and the variation of its
dielectric constant with temperature.

V. CONCLUSION

With the help of the transverse transmission line
technique and using the equivalent expressions indicated in
Table I, the case of a large number of the dielectric layers is
reduced to the iteration of the formulas similar to (16) and
(17). These simple formulas permit an extremely easy
numerical analysis of the problem. Moreover, they permit
the structures as different as a periodic array of strips and a
microstrip with rectangular side walls to be analyzed iden-
tically. Using this method, the number of dielectric layers
will be no more considered as an obstacle in the deter-
mination of Green’s functions. Having a practical view of the
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problem, one can use the computer programs already
existing, with very little modification. The theory presented
thus unifies all the Green’s function theories used for the
microstrip structures with any kind of geometry.
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Calculation of Electromagnetic Energy
Absorption in Prolate Spheroids by the
Point Matching Method

R. RUPPIN

Abstract—The point matching method is used to calculate
electromagnetic power absorption in tissue prolate spheroids irra-
diated by a plane wave. The calculation extends from the low-
frequency region and well into the resonance region, but is restricted
to spheroids of small eccentricity. A strong dependence of the
absorption on the orientation and the polarization of the incident
beam is found to occur, in agreement with previous experimental
measurements on animals and phantom models.

I. INTRODUCTION

"N THE THEORETICAL analysis of the interaction of

 clectromagnetic radiation with biological bodies it is
usually necessary to resort to simplified geometries. The
spherical model has often been used [1]-[3] because of the
availability of the Mie theory which provides an analytic
solution. Recently, Gandhi [4]-[6] has determined experi-
mentally that there exist interesting polarization effects
which cannot be explained by spherical models. An impor-
tant finding of his measurements was that the resonance
absorption for electric polarization (electric field parallel to
the long dimension of the irradiated body) was much higher
than for the magnetic polarization. The prolate spheroidal
model naturally arises as a candidate for the theoretical
interpretation of such polarization effects. Unfortunately,
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this geometry is analytically tractable only in the quasi-
static limit, ie., for wavelengths much longer than the
dimensions of the spheroid. A perturbative extension of the
low frequency solution has been employed in the calcula-
tions of Durney et al. [7] and Johnson et al. [8]. Their results
do exhibit polarization effects, but are still restricted to low
frequencies (lower than 30 MHz for man-sized spheroids)
and cannot give information about the important resonance
region.

In this paper we employ a numerical method to calculate
the absorption for higher frequencies, extending well into
the resonance region, but only for spheroids with major to
minor axis ratio not larger than 1.5. The point matching
method used here has been reviewed by Kerker [9], and has
more recently been applied to the calculation of the scatter-
ing of radio waves from raindrops [10], [11]. In the following
section we briefly describe the method, using the notation of
Morrison and Cross [11]. The numerical calculations are
presented in Section IIL, and in Section IV the results are
discussed and compared with previous experimental results.

II. POINT MATCHING METHOD

We consider a homogeneous prolate spheroid of tissue
which is irradiated by an electromagnetic plane wave of
frequency w. Let a denote the length of the semiaxis in the
symmetry direction and let b denote the lengths of the other
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