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A Simple Method for Determining the Green’s
Function for a Large Class of MIC Lines Having

Multilayered Dielectric Structures
RAYMOND CRAMPAGNE, MAJID AHMADPANAH, AND JEAN-LOUIS GUIRAUD

Abstract—To find the characteristic parameters of the wave

propagation in microstrip structures, several Green’s function

methods have already been developed, corresponding to particular

geometric configurations. In this paper, three of these methods are
synthesized, showing that the final equations in the different cases are
identical. Moreover, using the transverse transmission line theory,
tbe Green’s function is solved numerically for an N-layer dielectric
strncture.

I. INTRODUCTION

M ICROSTRIP transmission lines are largely used in
the microwave integrated circuits. Although being a

simplifying approximation, the quasi-TEM approximation

is well known to have proved useful in giving quite accurate

results for practical purposes. The characteristic parameters
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of such lines have been calculated, using various methods.

The method utilizing Green’s potential function lets one

transform a differential equation to an integral one; where

the unknown quantity becomes the charge ddi’nsity. This is

solved easily by numerical techniques using the moment and

the point matching methods.

In this method, the conductor geometry can be defined

exactly; in particular the conductor’s thickness and the

dissymmetry in the strip configuration can be taken into

account. However, we assume infinitely thin symmetric

conductors because these parameters do not modify the

determination of the Green’s function.

The present paper tries to generalize the studies done on

microstrip lines with two or three layers of dielectric [1]-[3]

in that it determines the Green’s function for multilayer

microstrip lines having the same conductor geometry as

used in previous studies. Our main aim had been at present-

ing the results in analytic form which lends itself to numeric

solution, requiring very little modification in the programs

already existing.
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Fig. 1, The geometric configuration for determimng the Green’s function

m a rectangular region; definition of notations,

H. USE OF THE GREEN’S FUNCTION

For a unit charge located at (Xo,yo), the Green’s function

should satisfy, by definition, the Poisson’s differential equa-

tion in the plane (x,y):

V: G(x,y Ixo,yo) = ;ti(x – Xo) ~6(Y – yO) (1)

using the notations of Fig. 1, the following boundary

ccmditions should be applied to each dielectric interface:

G(x> S, – O) = G(x> Sj + O) (2a)

Ej ~ [G(x3 Sj _ O)] = &j+ ~~ [G(x, Sj + 0)]. (2b)

Figs. 2(a), 3(a), and 4(a) illustrate the configurations used in

practice, while Figs. 2(b), 3(b), and 4(b) show the corre-

sponding geometries which permit the determination of the

Green’s function. Depending on the type of the

configuration, several methods have been used tot ransform

th~e differential equation (1) with two variables, to a single

variable differential equation, integrable analytically.

To solve the problem of an inhomogeneous triplate, Figs.

2(a) and (b), Yamashita, [1] expands the Green’s function in

a Fourier transform in the x-coordinate:

.7(P)= (‘mf(~)ejpx~x.
._m

So, equation (1) is expressed as the following differential

equation:

()$ –Bz why) = +(P) “ qY – .YO) (3)
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Fig. 2. (a) The triplate configuration, (b) The colrespondmg geometry

for determining the Green’s function (s+ O).
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Fig. 3. (a) Array of periodic conductors. (b) The elementary cell for

determining the Green’s function (~:+ O),
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Fig. 4. (a) Microstrlp with rectangular sidewalls. (b) The corresponding

geometry to calculate the Green’s function (s -+ O).

where (? and ~ are the Fourier transforms of the Green’s

function and the unit charge, respectively. The boundary

conditions, satisfied by ~ lead to the equations similar to

(2a) and (2b).

In the second configuration, Fig. 3(a) and (b), with which

the microstrip periodic structures cart be analyzed, Weiss [3]

expands the solution in the form of space harmonics, using

the fact that the medium is invariant by a translation p a

the x-coordinate,

+ cc

G(y,x Iyo,xo) = ~ Gm(y)ejk

After some mathematical manipulations, equation (1

the relation above can be written as:

01’lg

and

(4)

Here again, the continuity conditions satisfied by are similar

to those in (2).

Figs. 4(a) and (b) illustrate the configurations which

correspond to the rnicrostrip line with rectangular side

walls, [4].

This is only a particular case of a prc,blem which can give

rise to eight different cases, dependimg on whether the
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Again, the functions G; should satisfy the boundary

conditions similar to (2).

The differential equations (3), (4), (6), (7), and (8) and the

corresponding boundary conditions, have in general been
solved for a very few number of dielectric layers, because the

method, consisting of satisfying the boundary conditions on

each dielectric interface, leads to a system of linear equations

of 2N rows (N being the number of the dielectric layers). To

overcome this difficulty, some authors [4] have tried to

generalize the problem. We shall show that the equations in

[4], which are mathematically exact, can be formulated by a

much simpler method and easier to treat numerically.

Moreover, we will consider some more general geometries

(Figs. 2(b), 3(b), and 4(b)).

At first, we note that all of the differential equations

already found (equations (3), (4), (6), (7), (8)) are identical,

just as are the boundary conditions.

So, the functions @?), GM, and G; can be determined by

similar methods. Moreover, the differential equation

satisfied by these functions and boundary conditions, can be

identified with the equations satisfied by the voltage and the

current along a transmission line.

I
Fig. 5. Classification based on the boundary conditions. The thick solid

~nes represent the electric walls, the dashed lines correspond to the
magnetic walls and the dielectric interfaces are specified by the thin
solid lines.

rectangular walls satisfy the boundary conditions of Dirich-

let type (electric wall, G = O), or of Neumann type (magnetic

wall, aG/an= O).

We shall show that using the transverse transmission line

method, the bouridary conditions on the lower and the

upper surfaces can be taken into account. Hence the eight

cases mentioned above can be reduced to three, as shown in

Fig. 5, where the conditions on the horizontal walls can be

arbitrary.

As in [2], the Green’s function can be expressed as the sum

of the product of elementary functions with separated

variables:

III. THE TRANSVERSE TRANSMISSION LINE METHOD
n=l

Consider a transmission line with a current source of

intensity 1, at y = yO. The voltage and current relations

along the line are [5]-[7]:

in order to satisfy the boundary conditions on the vertical

walls, the following expressions are found for G;(x), for the

three cases of Fig. 5:
dV

5=
–yzcl (9)

case 4(a): G:(x) = cos ~, n=2,3, ”””c0,
a

dl
––; v+l. ”d(y–yo)

zy– .
(lo)

case 4(b): G;(x) = sin (2n + l);, n=l,2, ”””m,

where ZC is the characteristic impedance of the line and y is

the propagation constant. Equations (9) and (10) solved

simultaneously lead to a differential equation satisfied by the

voltage:

2217

case 4(c): G;(x) = sin ~, n=l,2, -””m.
a

using these expressions in equation (5) and noting that the

functions sin (nnx/a), cos (nnx/a), and sin (2n + l)(nx/2a)

are orthogonal in the interval (O,a),the following differential

equations are obtained:

Uv
~ – yzv= –yzcl, “ d(y – ye). (11)

In the case of the change in the characteristic admittance

of the line, the continuity conditions are

q=~+l (12a)

(6)
and Ii = I,+ ~ which combined with (9) give:

(12b)

=~ti(y– yo) sin (2n -tl)% (7)
Comparing (11), (12a), and (12b), satisfied by the voltage

along the transmission line, with those satisfied by the
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one-dimensional Green’s function, one notices the following

similarities:

1) The functions characterizing the Green’s function can

be identified by the voltage along the line:

V = @); G~(y); G:(y).

2) According to (2b) and (12b), the dielectric constant of

the layer can be identified by the characteristic admittance of

the transmission line.

Table I shows the identification of all of the characteristic

parameters concerned in equations (3), (4), (6), (7), and (8).

For example, for the configuration illustrated in Fig. 5(c),

comparing (8) and (11), we obtain: y = nrr/a.
Taking ~i = &i and equalizing the right-hand sides of the

two equations gives the expression for the intensity of the

current source:

1, =~sin F.
nn a

On the same reasoning, the other values of Table I are

found in a similar way. If the Green’s function is to be

calculated in the charge plane (y = y.), according to the
previous identifications, we should determine the voltage on

the transmission line at y = y.:

v = .22.

where Z is the impedance seen in the plane y = y. because of

a,ll transmission line steps of length hi and the characteristic

81dmittanCe &i. These steps can be terminated by short-

circuits (Dirichlet’s case); open circuits (Neumann’s case),

or by a matched charge (where the dielectric is infinitely

long).

Consider the example of four dielectric layers represented

in Fig. 6(a). This is a special case of the configuration

(a)

Y= X+Y3
(b)

Fig. 6. (a) Microstrip with rectangular sidewalls and 4 dielectric layers.
(b) Application of the transverse transmission fine method.

illustrated in Fig. 5(c), where the lower and the upper walls

are the short circuits. With the help of Table I, the Green’s

function is found to be

G(x,y) = ~ G;(y) sin ~, Y=YO (13)
n



86 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-26, NO. 2, FEBRUARY 1978

where G:(YO) is determined by the transverse transmission

line technique Fig. 5(b). The admittance in the charge plane

is

nnhh nrchz
E4 coth ~ + 83 tanh —

+83”
nzh4 n;h, “4)

C3 + E4 coth —. tanh —
a a

referring to Table I, the source intensity is found to be equal

to 2/nz sin nnxO/a, and the function G:(hl + h2) is deter-

mined by the following relation:

21 nnxo
G;(hl+hJ=X” Ysin~. (15)

The resultant Green’s function is found by replacing in

equation (13) the values obtained in (14) and (15).. Taking

h~ = O, we find the formulas presented by Yamashita and

Atsuki [2] in a modified form.

In this way, we are in the possession of a general theory

which is independent of the number of the dielectric layers.

The problem is reduced to the determination of Y, for which

the following formula should be iterated:

Y=~”
Y~ + ~ tanh yl

~ + YL tanh yl”

For the horizontal walls, Y~ = O for Neumann and is

infinity in the case of Dirichlet. In the example above,

Dirichlet conditions were considered; to solve the problem

with Neumann conditions, coth nnh ~/a and coth rmh~/a
must be replaced by tanh nnh ~/a and tanh nrch4/a, respec-

tively. To find the Green’s function in a plane other than that

of the charge, at a distance h, the formula giving the voltage

along the transmission line must be iterated:

{ )V = V. cosh yh + ~ sinh yk .
L

(17)

In Fig. 6(a), for example, to find the Green’s function at

Y = hl, G~(hl ) is determined and using equation (17), we
have

where Z,, is the impedance of a short-circuit at the end of a

length OFline hl, that is,

IV. APPLICATION

An important application of this theory is

microstrip configurations whose dielectric

the study of the

medium has a

100

75

50.

25

/

Fig. 7. Characteristic parameters of the propagation along a microstrip;

the dielectric constant of the substrate having an exponential variation.

variable dielectric constant with an index gradient in the y

direction. In this case, in order to apply the method, the

dielectric thickness is subdivided into N equal intervals of

constant permittivity (Fig. 7). The numerical studies have

shown that, for the index gradients with no abrupt variation,

the characteristic parameters of the propagation tend to a

limit, and that subdividing the dielectric into 30 layers is

quite sufficient.

Fig. 7 illustrates the variation of the effective dielectric

constant and the characteristic impedance for an exponen-

tial variation of the dielectric constant. To obtain the curves,

the value of the relative permittivity has been taken constant

(equal to 11) in the conductor plane, and it has been varied

from 1 to 10 in the ground plane. This can be the starting

point of further studies concerning the heat diffusion

through a dielectric substrate, and the variation of its

dielectric constant with temperature.

V. CONCLUSION

With the help of the transverse transmission line

technique and using the equivalent expressions indicated in

Table I, the case of a large number of the dielectric layers is

reduced to the iteration of the formulas similar to (16) and

(17). These simple formulas permit an extremely easy
numerical analysis of the problem. Moreover, they permit

the structures as different as a periodic array of strips and a

microstrip with rectangular side walls to be analyzed iden-

tically. Using this method, the number of dielectric layers

will be no more considered as an obstacle in the deter-

mination of Green’s functions. Having a practical view of the

3

7

6

5

1

3

2

1



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-26, NO. 2, FEBRUARY 1978 87

problem, one can use the computer programs already [3] J. A. Weiss, “Dispersion and field analysls of a microstrip meander line

existing, with very little modification. The theory presented slow-wave structure,” IEEE Trans. Mlcrowaoe Theory Tech., vol.

thus unifies all the Green’s function theories used for the
MTT-22, pp. 1194-1201, Dec. 1974.

[4] M. Kobayashi and R. Terakado, “General form of Green’s function
microstrip structures with any kind of geometry. for multdayer microstrip line with rectangular side walls,” IEEE

[1]

[2]

Trans. Mic;owaue Theor~ Tech., vol. MTT-~4, pp. 626-628.1976.

REFERENCES [5] Y. Chang and I.E. Chang, “Simple method for the variational analysis

E. Yamashita. “Variational method for the analysis of mlcrostrip like of a generalized N-dielectric layer transmission line,” Electronics Let-

transmisslon lines,” IEEE Trans. Microwave Theory Tech., vol. ters, vol. 6, no. 3, pp. 49-50, Feb. 5, 1970.

MTT-16, pp. 251-256, Apr. 1968. [6] R. E. Collin, Field Theory of Guided Waues. New York: McGraw-Hill,

E. Yamashita and K. Atsuki, “Strlphne with rectangular outer conduc- 1960.

tors and three dielectric layers.” IEEE Trans. Microwaue Theory [7] J. Vine, “Impedance networks,” in Fteld Analysis. Exp. and Comp.
Tech., vol. MTT- 18, pp. 238-244, May 1970. Methods, Vitkovitch, Ed. New York: Van Nostrand, 1966.

Calculation of Electromagnetic Energy
Absorption in Prolate Spheroids by the

Point Matching Method
R. RUPPIN

Abstract—The point matching method is used to calculate

electromagnetic power absorption in tissue prolate spheroids irra-
diated by a plane wave. The calculation extends from the low-
frequency region and well into the resonance region, but is restricted

to spheroids of small eccentricity. A strong dependence of the
ahsorption on the orientation and the polarization of the incident

beam is found to occur, in agreement with previous experimental

measurements on animals and phantom models.

I. INTRODUCTION

1

“N THE THEORETICAL analysis of the interaction of

electromagnetic radiation with biological bodies it is

u;ually necessary to resort to simplified geometries. The

spherical model has often been used [1]–[3] because of the

availability of the Mie theory which provides an analytic

solution. Recently, Gandhi [4]–[6] has determined experi-

mentally that there exist interesting polarization effects

which cannot be explained by spherical models. An impor-

tant finding of his measurements was that the resonance

absorption for electric polarization (electric field parallel to

the long dimension of the irradiated body) was much higher

than for the magnetic polarization. The prolate spheroidal

model naturally arises as a candidate for the theoretical

interpretation of such polarization effects. Unfortunately,

Manuscript received December 28. 1976; rewsed Aprd 20, 1977.
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this geometry is analytically tractable only in the quasi-

static limit, i.e., for wavelengths much longer than the

dimensions of the spheroid. A perturbative extension of the

low frequency solution has been employed in the calcula-

tions of Durney et al. [7] and Johnson et al. [8]. Their results

do exhibit polarization effects, but are still restricted to low

frequencies (lower than 30 MHz for man-sized spheroids)

and cannot give information about the important resonance

region.

In this paper we employ a numerical method to calculate

the absorption for higher frequencies, extending well into

the resonance region, but only for spheroids with major to

minor axis ratio not larger than 1.5. The point matching

method used here has been reviewed by Kkerker [9], and has

more recently been applied to the calculation of the scatter-

ing of radio waves from raindrops [10], [1 1]. In the following

section we briefly describe the method, using the notation of

Morrison and Cross [11]. The numerical calculations are

presented in Section III, and in Section IV the results are

discussed and compared with previous experimental results.

II. POINT MATCHING METHOD

We consider a homogeneous prolate spheroid of tissue

which is irradiated by an electromagnetic plane wave of

frequency O. Let a denote the length of the semiaxis in the

symmetry direction and let b denote the lengths of the other

0018-9480/78/0200-0087 $00.75 01978 IEEE


